On some common compressive sensing recovery algorithms and applications - Review paper
نویسندگان
چکیده
Compressive Sensing, as an emerging technique in signal processing is reviewed in this paper together with its’ common applications. As an alternative to the traditional signal sampling, Compressive Sensing allows a new acquisition strategy with significantly reduced number of samples needed for accurate signal reconstruction. The basic ideas and motivation behind this approach are provided in the theoretical part of the paper. The commonly used algorithms for missing data reconstruction are presented. The Compressive Sensing applications have gained significant attention leading to an intensive growth of signal processing possibilities. Hence, some of the existing practical applications assuming different types of signals in real-world scenarios are described and analyzed as well.
منابع مشابه
Distributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology
Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...
متن کاملA Survey on Sub-Nyquist Sampling
This paper gives a survey of sub-Nyquist sampling. Sub-Nyquist sampking is of great interest in the environment that sampling by Nyquist rate is infeasible due to either hardware or software limitation. The survey summarizes a number of recent important researches on sub-Nyquist sampling (compressive sensing). In addition to the basics of sub-Nyquist sampleing, including the fundamental theory ...
متن کاملOne-Bit Compressive Sensing with Partial Support Information
This work develops novel algorithms for incorporating prior-support information into the field of One-Bit Compressed Sensing. Traditionally, Compressed Sensing is used for acquiring high-dimensional signals from few linear measurements. In applications, it is often the case that we have some knowledge of the structure of our signal(s) beforehand, and thus we would like to leverage it to attain ...
متن کاملNew Wavelet Coefficient Raster Scannings for Compressive Imaging
The Delsarte-Goethals frame has been proposed for deterministic compressive sensing of sparse and compressible signals. Its performance in compressive imaging applications falls short of that obtained for arbitrary sparse vectors. Prior work has proposed specially tailored signal recovery algorithms that partition the recovery of the input vector into clustered and unclustered portions. In this...
متن کاملOne-Bit Compressive Sensing of Dictionary-Sparse Signals
One-bit compressive sensing has extended the scope of sparse recovery by showing that sparse signals can be accurately reconstructed even when their linear measurements are subject to the extreme quantization scenario of binary samples—only the sign of each linear measurement is maintained. Existing results in one-bit compressive sensing rely on the assumption that the signals of interest are s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1705.05216 شماره
صفحات -
تاریخ انتشار 2017